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LETTER TO THE EDITOR 

q -state Potts models in d dimensions: Migdal-Kadanoff 
approximation 

D Andelman and A N Berker 
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 
02139, USA 

Received 27 October 1980 

Abstract. The first- and second-order phase transitions of the q-state Potts models are 
obtained in arbitrary dimension d. Critical and tricritical behaviours merge and annihilate 
at q,(d), clearing the way to first-order transitions at q :  q, (d)  by the condensation of 
effective vacancies. The value of q,(d) decreases with increasing d, from diverging as 
exp[2/(d - l ) ]  at d + 1+, to q,(2) = 3.81 (cf exact value of 4), to lower values at d :  2. For 
given d, a changeover in critical behaviour occurs at q l (d ) ,  as the critical fixed points merge 
from the Potts-lattice-gas region to the undiluted Potts limit. It is suggested that the power 
law singularities of the percolation problem ( q  + 1') have logarithmic corrections. 

Potts (1952) models are composed of an array of local degrees of freedom, each of 
which can be in one of q states. The energy is determined only by whether neighbouring 
degrees of freedom are in the same state or not. As such, the q-state Potts models are a 
generalisation of the Ising model (q  = 2). These models achieved recognition because 
several pieces of exact information were derived for their non-trivial phase transition in 
two dimensions. Baxter (1973) showed that the transition is second order for q 5 qc = 4, 
and first order for q ' qc. The discovery of experimental realisations increased the 
interest in q > 2 Potts models. Examples are adsorbed systems in two dimensions 
(Alexander 1975, Domany et a1 1977), and materials undergoing displacive transitions 
(Aharony et a1 1977), cubic magnets (Barbara et a1 1978), multi-component fluid 
mixtures (Das and Griffiths 1979), and intercalated materials (Bak and Domany 1979) 
in three dimensions. Further, in any dimension, formal extension to q = 1 yields the 
percolation problem (Fortuin and Kasteleyn 1969). 

In two dimensions, calculations using the position-space renormalisation-group 
method linked experimental phase diagrams and microscopic descriptions of overlayers 
(Schick eta1 1977, Berker et a1 1978, Ostlund and Berker 1979). Even for given q 2 qc, 
the second-order phase transition can be turned into first-order beyond a tricritical 
point, by the introduction of annealed vacancies into the system, which, when present in 
sufficient numbers, undergo a condensation (Berker et a1 1978). This situation is 
actually realised in unsaturated overlayers. The renormalisation-group study of the 
changeover at qc = 4 from second-order to first-order transitions revealed an analogous 
mechanism (Nienhuis et a1 1979). The q : qc Potts models, with no actual vacancies, 
have local regions of complete disorder which are entropically favoured, their large 
multiplicity being due to the large q value. Such regions act as effective vacancies, and 
their condensation causes the first-order transition. Further, by the unified study of 
both effective and actual vacancies, a previous conjecture (den Nijs 1979) for the exact 
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values of the thermal exponents at the 4' 4c critical points was extended to the 
tricritical points (Nienhuis et a1 1979). New conjectures followed, for the magnetic 
exponents (Nienhuis etal 1980b, Pearson 1980) and the equation of state (Nauenberg 
and Scalapino 1980, Cardy et a1 1980). 

The previous position-space renormalisation-group calculations in dimension d = 2 
used, initially, the cell-cluster approximation (Nienhuis et a1 1979) and, more quan- 
titatively, the variational approximation (Nienhuis et a1 1980a, Burkhardt 1980). We 
develop here a particular form of the Migdal-Kadanoff (Migdal 1975, Kadanoff 1976) 
approximation which is less sophisticated, but more flexible. Independently, Nauen- 
berg and Scalapino (1980) mention that they have carried out a similar renormalisation 
transformation. (The present calculation can alternatively be viewed as the exact 
solution of a family of hierarchical Potts models (Berker and Ostlund 1979).) This 
reveals that the picture of critical, tricritical and first-order transitions in Potts models is 
qualitatively applicable to arbitrary d f 2 as well. This is not surprising, in view of the 
physical generality of the vacancy condensation mechanism. The changeover value qc 
decreases with increasing d, in agreement with other recent renormalisation-group 
calculations, namely &-expansion at d = 4 (Aharony and Pytte 1980) and variational at 
discrete values of d close to 2 (Nienhuis et a1 1980c, Riedel 1980). The Migdal- 
Kadanoff transformation should be quantitatively most reliable in the limit d + 1'. 
Most notably, it is found that qc increases as exp[2/(d - l)] as d approaches one (Berker 
et a1 1980). We have discussed results in this limit separately. On the other hand, d = 2 
results are surprisingly quantitative (figure l a ) .  Furthermore, the treatment raises and 
addresses qualitatively new phenomena in arbitrary d (figure 2). 

Figure 1. The critical (c) and tricritical (t) thermal eigenvalues of the d = 2 Potts models, as 
obtained with the Migdal-Kadanoff approximation. The special points qo and q1 are 
indicated by the open and filled arrows. In broken curves, the conjectured exact values (den 
Nijs 1979, Nienhuis et a1 1979) for y z  are shown. The scaling field of y : ( q  < 41) is eCG. 
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Figure 2. (a, c, e): Fixed-point locations G* of the critical (c) and tricritical (t) branches. 
The projections of the 4 = 1 fixed lines are shown with broken lines. Arrows indicate the 
renormalisation-group flows. (b ,  d, f): The corresponding leading thermal eigenvalues. The 
special points qo and q1 are indicated by the open and filled arrows. (e', f): Our hypothesis 
for the true d : do behaviour, based on the modification of (e, f). 
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The renormalisation-group mechanism for the changeover at qc is based on the fact 
that the pure Potts model, which does not manifestly contain vacancies, is not retained 
under rescaling (Nienhuis et a1 1979). A single rescaling yields a renormalised system 
with manifest vacancies. Accordingly, the renormalisation-group study is within the 
context of the Potts-lattice-gas model?, 

which was originally introduced to study ordering in the presence of actual vacancies 
(Berker et a1 1978), in adsorbed submonolayers. At each site i of a hypercubic lattice, 
the Potts variable s, = U,  b, c, . . . can take one of q values, and a,,,, = 1 (0) for s, = s, 
(si # s,). The lattice-gas variable t, = 0 (1) means that site i is vacant (occupied). The 
sums (ij) are over all pairs of nearest-neighbour sites. The limit G + a  removes all 
vacancies from the system. 

The Migdal-Kadanoff renormalisation is effected here by choosing a superlattice 
composed of hypercubes of side twice the original lattice constant. All couplings not 
along hypercube edges are deleted and those along the edges are strengthened. The 
latter step is the “bond-moving’’ approximation. The transformation is completed by 
summing over all degrees of freedom not at hypercube corners. The first two terms in 
the Hamiltonian (1) are the couplings subjected to bond-moving. This separation of the 
Hamiltonian ensures that the effect of the bond-moving approximation vanishes in both 
the weak- and strong-coupling limits (Emery and Swendsen 1977). We found this 
scheme to be crucial for obtaining the changeover phenomenon of Potts models. (This 
type of separation also showed (Berker and Nelson 1979) that the Villain model 
becomes unstable to vacancies exactly at the X Y  separatrix point, suggesting the 
equivalence of effective vacancies and vortices in the d = 2XY model.) The resulting 
recursion relations are rather simple: 

J’  = ln(R3/R4), F‘= ln(R1R3/R:), G’ = G - d ln(Rlf/R3), 

R1=l+qf-’g,  R Z = l + [ l + ( q - l ) l - l ] g ,  (2) 
R3 = 1 + [1+  (4 - l).i-’]fg, Rq= 1[21-’+(q -2)1-2]fg, 

where (j = In 2, fi = In f, G = In g)  and (J ’ ,  F‘, G’) are respectively the bond-moved and 
renormalisation interactions. At this point, the condition (Nienhuis and Nauenberg 
1975) 

G’ = bdG (3) 
(where b is the length-rescale factor) of the first-order fixed point (G* = 0; J ” ,  F* = CO) 

will not be obeyed, because the bond-moving approximation eliminates sites by 
completely decoupling them from the infinite lattice. This is cured by shrinking the 
lattice during the bond-moving described above, so that the density of sites is conserved 
on the infinite lattice. This is akin to the systematic correction introduced in th:. 
position-space renormalisation-group study of localisation (Lee 1979). The effect here 
is to fix the length-rescale factor as 

(4) b = (1 + d) l ’d ,  

t An alternative, but presumably equivalent, procedure maps the d = 2 Potts models to d = 1 quantum 
models, and follows by renormalisation (S6lyom and Pfeuty 1980). 
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The bond-strengthening along the edges is done as 
j = bd-' J and fi = bd-'F, 

so that the other conditions (Klein et a1 1976) 
J ' =  bd-'J and F ' =  bd-'F 

of the first-order fixed point are obeyed. This way of fixing b does not affect the 
topology of our renormalisation flows. 

As in the previous d = 2 treatments (Nienhuis et a1 1979), this renormalisation- 
group transformation produces a line of critical fixed points, parametrised by q s qc and 
governing the second-order phase transitions, and similarly a line of tricritical fixed 
points. These critical and tricritical fixed points smoothly merge and annihilate at qc, 
clearing the way to a first-order fixed line. The critical and tricritical thermal exponents 
for d = 2 are shown in figure 1. Agreement is satisfactory between this approximate 
calculation of the leading exponent yz  and the values which are believed to be exact (den 
Nijs 1979, Nienhuis et a1 1979). The changeover value qc = 3.81 is obtained, to be 
compared with the exact value of 4 (Baxter 1973). All exponents exhibit a qualitative 
resemblance to their d = l+ behaviour (Berker et a1 1980). The low-q structure of the 
critical branch is explained below. 

Figure 2 shows the fixed-point locations G* and the leading exponents yz for 
d = 1.6, 1.95, and 2.3. Viewing critical behaviour as a function of q, two other special 
points are found, such that O < q o s q l < q c .  At q l ,  the critical behaviour has a 
non-analyticity. The mechanism behind this is that the critical fixed points, which are 
stable within the phase boundary surface, occur in the diluted (undiluted) Potts region 
for q > q1 (q  < q l ) .  Below qo, the non-trivial fixed point of the undiluted Potts limit 
becomes unstable to the sirlk (G" <CO, J" = F" = 0) of the diluted, disordered phase. 
We have exhibited, for q < qo, the exponents of this unstable fixed point of the undiluted 
limit. At do = 1.95, qo = 41 = 1, the d dependences of qo and q1 are interchanged. For 
d <do, qo = 1 and 1 < q1 < qC. With decreasing d, q1 increases. As d + 1+, q1 diverges as 
exp[ln 4/(d - l)], but the qualitative picture is unchanged since qc diverges faster as 
exp[2/(d - l)]. For d > do, 0 < qo < 1 and q1 = 1. With increasing d, qo decreases 
toward zero. In this approximation, qc(do) = 4.2. The distinct existences of undiluted 
and diluted fixed points were previously noted in variational renormalisation-group 
calculations (Nienhuis et a1 1980a, Burkhardt 1980), but their merger and role 
interchange were not detected. 

The occurrence of effective vacancies is favoured for large q and d, as reflected in the 
qc(d) phenomenon. Conversely, it is reasonable that the undiluted Potts model is stable 
at low q and d. On the other hand, we shall argue that the discontinuity in figure 2(f)  is a 
figment of the approximation. At q = 1, the lattice-gas component (F, G) of the system 
recurs independently (Klein et a1 1978) of the Potts component ( J ) .  The tricritical 
branch intersects the critical fixed point of this q = 1 lattice-gas component, G" = 0, 
F" Z 0. The present linear transformation gives two lines of fixed points at q = 1, 
F* = 0, G" 2 Gc(d), J" = J?,z (G"). As seen in figure 2(e), the critical branch intersects 
one of the latter fixed lines at finite G" as q + I f ,  and stability within the phase 
boundary surface globally shifts to G" = CO as q = 1 is crossed. However, a nonlinear 
transformation would have given at q = 1, instead of the two fixed lines, two fixed points 
at F" = 0, G*  = CO (Nelson and Fisher 1975). Based on this, a reasonable guess for the 
true d >do behaviour is shown in figures 2(e', f'), with the critical branch rapidly but 
smoothly merging at q1 = 1 from the diluted region to the undiluted limit. Either figure 
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2(e), or figure 2(e ’ )  for d >do, as well as figures 2(a, c)  for d I do, come with a marginal 
eigenvalue y4(q + 1+) = 0, implying, within the context of this approximation, 
logarithmic corrections to the power law singularities of the percolation problem. 

Finally, another shortcoming of the transformation is that, strictly interpreted, the 
undiluted limit has a non-trivial fixed point even for q 7 ql, be it unstable to the diluted 
region. This is because the Migdal-Kadanoff transformation is operationally a deci- 
mation, and can only differentially project a many-site property such as effective 
vacancy occurrence. 

We thank Professors A Aharony and A P Young for very useful discussions and 
correspondence. This research was supported by the National Science Foundation 
Grant No DMR-79-26405. 
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